
Spidermon Documentation

Zyte

Mar 13, 2023

Contents

1 Contents 3
1.1 Installation . 3
1.2 Getting started . 3
1.3 Monitoring your jobs . 11
1.4 Item Validation . 20
1.5 Expression Monitors . 23
1.6 Settings . 25
1.7 “How-to” guides . 28
1.8 Actions . 33
1.9 Release notes . 46

Python Module Index 53

Index 55

i

ii

Spidermon Documentation

Spidermon is a framework to build monitors for Scrapy spiders. It offers the following features:

• It can check the output data produced by Scrapy (or other sources) and verify it against a schema or model that
defines the expected structure, data types and value restrictions. It supports data validation based on two external
libraries:

– jsonschema: https://github.com/Julian/jsonschema

– Schematics: https://github.com/schematics/schematics

• It allows you to define conditions that should trigger an alert based on Scrapy stats.

• It supports notifications via email, Slack, Telegram and Discord.

• It can generate custom reports.

Contents 1

https://github.com/Julian/jsonschema
https://github.com/schematics/schematics

Spidermon Documentation

2 Contents

CHAPTER 1

Contents

1.1 Installation

Spidermon’s core functionality provides some useful features that allow you to build your monitors on top of it. The
library depends on jsonschema and python-slugify.

If you want to set up any notifications, additional monitoring dependencies will help with that.

If you want to use schematics validation, you probably want validation.

So the recommended way to install the library is by adding both:

pip install "spidermon[monitoring,validation]"

1.2 Getting started

Spidermon is a monitoring tool for Scrapy spiders that allows you to write monitors that may validate the execution
and the results of your spiders.

This tutorial shows how to set up Spidermon to monitor a spider to check if it extracted a minimum number of items
and if they follow a defined data model. The results of the spider execution will be sent to a Slack channel.

It is expected that you have a basic knowledge of Scrapy. If that is not the case read the Scrapy Tutorial and come
back later. We will also assume that Spidermon is already installed on your system. If that is not the case case, see
Installation.

1.2.1 Our sample project

You can find the complete code of our tutorial project here.

We are going to scrape quotes.toscrape.com, a website that lists quotes from famous authors. First we need a regular
Scrapy project and create a simple spider:

3

https://pypi.org/project/jsonschema/
https://pypi.org/project/python-slugify/
https://pypi.org/project/schematics/
https://scrapy.org/
https://doc.scrapy.org/en/latest/intro/tutorial.html
https://github.com/scrapinghub/spidermon/tree/master/examples/
http://quotes.toscrape.com/
https://doc.scrapy.org/en/latest/intro/tutorial.html?#creating-a-project

Spidermon Documentation

$ scrapy startproject tutorial
$ cd tutorial
$ scrapy genspider quotes quotes.toscrape.com

And our spider code:

tutorial/spiders/quotes.py
import scrapy

class QuotesSpider(scrapy.Spider):
name = 'quotes'
allowed_domains = ['quotes.toscrape.com']
start_urls = ['http://quotes.toscrape.com/']

def parse(self, response):
for quote in response.css('.quote'):

yield {
'quote': quote.css('.text::text').get(),
'author': quote.css('.author::text').get(),
'author_url': response.urljoin(

quote.css('.author a::attr(href)').get()),
'tags': quote.css('.tag *::text').getall(),

}

yield scrapy.Request(
response.urljoin(

response.css('.next a::attr(href)').get()
)

)

1.2.2 Enabling Spidermon

To enable Spidermon in your project, include the following lines in your Scrapy project settings.py file:

SPIDERMON_ENABLED = True

EXTENSIONS = {
'spidermon.contrib.scrapy.extensions.Spidermon': 500,

}

1.2.3 Our first monitor

Monitors are similar to test cases with a set of methods that are executed at well defined moments of the spider
execution containing your monitoring logic.

Monitors must be grouped into monitor suites which define a list of monitors that need to be executed and the actions
to be performed before and after the suite execute all monitors.

Our first monitor will check whether at least 10 items were returned at the end of the spider execution.

Create a new file called monitors.py that will contain the definition and configuration of your monitors.

tutorial/monitors.py
from spidermon import Monitor, MonitorSuite, monitors

(continues on next page)

4 Chapter 1. Contents

Spidermon Documentation

(continued from previous page)

@monitors.name('Item count')
class ItemCountMonitor(Monitor):

@monitors.name('Minimum number of items')
def test_minimum_number_of_items(self):

item_extracted = getattr(
self.data.stats, 'item_scraped_count', 0)

minimum_threshold = 10

msg = 'Extracted less than {} items'.format(
minimum_threshold)

self.assertTrue(
item_extracted >= minimum_threshold, msg=msg

)

class SpiderCloseMonitorSuite(MonitorSuite):

monitors = [
ItemCountMonitor,

]

This suite needs to be executed when the spider closes, so we include it in the SPIDER-
MON_SPIDER_CLOSE_MONITORS list in your settings.py file:

tutorial/settings.py
SPIDERMON_SPIDER_CLOSE_MONITORS = (

'tutorial.monitors.SpiderCloseMonitorSuite',
)

After executing the spider, you should see the following in your logs:

$ scrapy crawl quotes
(...)
INFO: [Spidermon] -------------------- MONITORS --------------------
INFO: [Spidermon] Item count/Minimum number of items... OK
INFO: [Spidermon] --
INFO: [Spidermon] 1 monitor in 0.001s
INFO: [Spidermon] OK
INFO: [Spidermon] ---------------- FINISHED ACTIONS ----------------
INFO: [Spidermon] --
INFO: [Spidermon] 0 actions in 0.000s
INFO: [Spidermon] OK
INFO: [Spidermon] ----------------- PASSED ACTIONS -----------------
INFO: [Spidermon] --
INFO: [Spidermon] 0 actions in 0.000s
INFO: [Spidermon] OK
INFO: [Spidermon] ----------------- FAILED ACTIONS -----------------
INFO: [Spidermon] --
INFO: [Spidermon] 0 actions in 0.000s
INFO: [Spidermon] OK
[scrapy.statscollectors] INFO: Dumping Scrapy stats:
(...)

If the condition in your monitor fails, this information will appear in the logs:

$ scrapy crawl quotes

(continues on next page)

1.2. Getting started 5

Spidermon Documentation

(continued from previous page)

(...)
INFO: [Spidermon] -------------------- MONITORS --------------------
INFO: [Spidermon] Item count/Minimum number of items... FAIL
INFO: [Spidermon] --
ERROR: [Spidermon]
==
FAIL: Item count/Minimum number of items
--
Traceback (most recent call last):

File "/tutorial/monitors.py",
line 17, in test_minimum_number_of_items
item_extracted >= minimum_threshold, msg=msg

AssertionError: False is not true : Extracted less than 10 items
INFO: [Spidermon] 1 monitor in 0.001s
INFO: [Spidermon] FAILED (failures=1)
INFO: [Spidermon] ---------------- FINISHED ACTIONS ----------------
INFO: [Spidermon] --
INFO: [Spidermon] 0 actions in 0.000s
INFO: [Spidermon] OK
INFO: [Spidermon] ----------------- PASSED ACTIONS -----------------
INFO: [Spidermon] --
INFO: [Spidermon] 0 actions in 0.000s
INFO: [Spidermon] OK
INFO: [Spidermon] ----------------- FAILED ACTIONS -----------------
INFO: [Spidermon] --
INFO: [Spidermon] 0 actions in 0.000s
INFO: [Spidermon] OK

1.2.4 Notifications

Receiving fail notification in the logs may be helpful during the development but not so useful when you are running a
huge number of spiders, so you can define actions to be performed when your spider start or finishes (with or without
failures).

Spidermon has some built-in actions but you are free to define your own.

1.2.5 Slack notifications

Here we will configure a built-in Spidermon action that sends a pre-defined message to a Slack channel using a bot
when a monitor fails.

tutorial/monitors.py
from spidermon.contrib.actions.slack.notifiers import SendSlackMessageSpiderFinished

(...your monitors code...)

class SpiderCloseMonitorSuite(MonitorSuite):
monitors = [

ItemCountMonitor,
]

monitors_failed_actions = [
SendSlackMessageSpiderFinished,

]

6 Chapter 1. Contents

Spidermon Documentation

After enabling the action, you need to provide the Slack credentials. You can access the required credentials by
following these steps to How do I configure a Slack bot for Spidermon?. Later, fill the credentials in your settings.py
as follows:

tutorial/settings.py
(...)
SPIDERMON_SLACK_SENDER_TOKEN = '<SLACK_SENDER_TOKEN>'
SPIDERMON_SLACK_SENDER_NAME = '<SLACK_SENDER_NAME>'
SPIDERMON_SLACK_RECIPIENTS = ['@yourself', '#yourprojectchannel']

If a monitor fails, the recipients provided will receive a message in Slack:

1.2.6 Telegram notifications

Here we will configure a built-in Spidermon action that sends a pre-defined message to a Telegram user, group or
channel using a bot when a monitor fails.

tutorial/monitors.py
from spidermon.contrib.actions.telegram.notifiers import
→˓SendTelegramMessageSpiderFinished

(...your monitors code...)

class SpiderCloseMonitorSuite(MonitorSuite):
monitors = [

ItemCountMonitor,
]

monitors_failed_actions = [
SendTelegramMessageSpiderFinished,

]

After enabling the action, you need to provide the Telegram bot token and Recipients. You can learn more about how
to create and configure a bot by following the steps on How do I configure a Telegram bot for Spidermon?. Later, fill
the required information in your settings.py as follows:

tutorial/settings.py
(...)
SPIDERMON_TELEGRAM_SENDER_TOKEN = '<TELEGRAM_SENDER_TOKEN>'
SPIDERMON_TELEGRAM_RECIPIENTS = ['chatid', 'groupid', '@channelname']

If a monitor fails, the recipients provided will receive a message in Telegram:

1.2.7 Discord notifications

Here we will configure a built-in Spidermon action that sends a pre-defined message to a Discord channel using a bot
when a monitor fails.

1.2. Getting started 7

https://api.slack.com/docs/token-types
https://core.telegram.org/bots

Spidermon Documentation

tutorial/monitors.py
from spidermon.contrib.actions.discord.notifiers import
→˓SendDiscordMessageSpiderFinished

(...your monitors code...)

class SpiderCloseMonitorSuite(MonitorSuite):
monitors = [

ItemCountMonitor,
]

monitors_failed_actions = [
SendDiscordMessageSpiderFinished,

]

After enabling the action, you need to provide the Discord Webhook URL. You can learn more about how to create
and configure a webhook How do I configure a Discord bot for Spidermon?. Later, fill the required information in
your settings.py as follows:

tutorial/settings.py
(...)
SPIDERMON_DISCORD_WEBHOOK_URL = "<DISCORD_WEBHOOK_URL>"

If a monitor fails, the recipients provided will receive a message in Discord:

The target channel is configured during the webhook creation on Discord.

In case you want to see the messages only in the terminal, set as True the environment variable SPIDER-
MON_DISCORD_FAKE.

1.2.8 Item validation

Item validators allows you to match your returned items with predetermined structure ensuring that all fields contains
data in the expected format. Spidermon allows you to choose between schematics or JSON Schema to define the
structure of your item.

In this tutorial, we will use a schematics model to make sure that all required fields are populated and they are all of
the correct format.

First step is to change our actual spider code to use Scrapy items. Create a new file called items.py:

tutorial/items.py
import scrapy

class QuoteItem(scrapy.Item):
quote = scrapy.Field()
author = scrapy.Field()
author_url = scrapy.Field()
tags = scrapy.Field()

And then modify the spider code to use the newly defined item:

8 Chapter 1. Contents

https://discord.com/developers/docs/resources/webhook
https://schematics.readthedocs.io/en/latest/
https://json-schema.org/
https://schematics.readthedocs.io/en/latest/
https://docs.scrapy.org/en/latest/topics/items.html

Spidermon Documentation

tutorial/spiders/quotes.py
import scrapy
from tutorial.items import QuoteItem

class QuotesSpider(scrapy.Spider):
name = 'quotes'
allowed_domains = ['quotes.toscrape.com']
start_urls = ['http://quotes.toscrape.com/']

def parse(self, response):
for quote in response.css('.quote'):

item = QuoteItem(
quote=quote.css('.text::text').get(),
author=quote.css('.author::text').get(),
author_url=response.urljoin(

quote.css('.author a::attr(href)').get()
),
tags=quote.css('.tag *::text').getall()

)
yield item

yield scrapy.Request(
response.urljoin(

response.css('.next a::attr(href)').get()
)

)

Now we need to create our schematics model in validators.py file that will contain all the validation rules:

tutorial/validators.py
from schematics.models import Model
from schematics.types import URLType, StringType, ListType

class QuoteItem(Model):
quote = StringType(required=True)
author = StringType(required=True)
author_url = URLType(required=True)
tags = ListType(StringType)

To allow Spidermon to validate your items, you need to include an item pipeline and inform the name of the model
class used for validation:

tutorial/settings.py
ITEM_PIPELINES = {

'spidermon.contrib.scrapy.pipelines.ItemValidationPipeline': 800,
}

SPIDERMON_VALIDATION_MODELS = (
'tutorial.validators.QuoteItem',

)

After that, every time you run your spider you will have a new set of stats in your spider log providing information
about the results of the validations:

$ scrapy crawl quotes
(...)
'spidermon/validation/fields': 400,

(continues on next page)

1.2. Getting started 9

Spidermon Documentation

(continued from previous page)

'spidermon/validation/items': 100,
'spidermon/validation/validators': 1,
'spidermon/validation/validators/item/schematics': True,

[scrapy.core.engine] INFO: Spider closed (finished)

You can then create a new monitor that will check these new statistics and raise a failure when we have a item validation
error:

monitors.py

from spidermon.contrib.monitors.mixins import StatsMonitorMixin

(...other monitors...)

@monitors.name('Item validation')
class ItemValidationMonitor(Monitor, StatsMonitorMixin):

@monitors.name('No item validation errors')
def test_no_item_validation_errors(self):

validation_errors = getattr(
self.stats, 'spidermon/validation/fields/errors', 0

)
self.assertEqual(

validation_errors,
0,
msg='Found validation errors in {} fields'.format(

validation_errors)
)

class SpiderCloseMonitorSuite(MonitorSuite):
monitors = [

ItemCountMonitor,
ItemValidationMonitor,

]

monitors_failed_actions = [
SendSlackMessageSpiderFinished,

]

You could also set the pipeline to include the validation error as a field in the item (although it may not be necessary,
since the validation errors are included in the crawling stats and your monitor can check them once the spiders finishes):

By default, it adds a field called _validation to the item when the item doesn’t match the schema:

tutorial/settings.py
SPIDERMON_VALIDATION_ADD_ERRORS_TO_ITEMS = True

The resulted item will look like this:

{
'_validation': defaultdict(

<class 'list'>, {'author_url': ['Invalid URL']}),
'author': 'Mark Twain',
'author_url': 'not_a_valid_url',
'quote': 'Never tell the truth to people who are not worthy of it.',
'tags': ['truth']

}

10 Chapter 1. Contents

Spidermon Documentation

1.3 Monitoring your jobs

1.3.1 Monitors

Monitors are the main class where you include your monitoring logic. After defining them, you need to include them
in a MonitorSuite, so they can be executed.

As spidermon.core.monitors.Monitor inherits from Python unittest.TestCase, you can use all existing assertion meth-
ods in your monitors.

In the following example, we define a monitor that will verify whether a minimum number of items were extracted
and fails if it is less than the expected threshold.

from spidermon import Monitor, monitors

@monitors.name('Item count')
class ItemCountMonitor(Monitor):

@monitors.name('Minimum items extracted')
def test_minimum_number_of_items_extracted(self):

minimum_threshold = 100
item_extracted = getattr(self.data.stats, 'item_scraped_count', 0)
self.assertFalse(

item_extracted < minimum_threshold,
msg='Extracted less than {} items'.format(minimum_threshold)

)

A Monitor instance defines a monitor that includes your monitoring logic and has the following properties that can
be used to help you implement your monitors:

data.stats dict-like object containing the stats of the spider execution

data.crawler instance of actual Crawler object

data.spider instance of actual Spider object

class spidermon.core.monitors.Monitor(methodName=’runTest’, name=None)

1.3.2 Monitor Suites

A Monitor Suite groups a set of Monitor classes and allows you to specify which actions must be executed at specified
moments of the spider execution.

Here is an example of how to configure a new monitor suite in your project:

monitors.py
from spidermon.core.suites import MonitorSuite

Monitor definition above...
class SpiderCloseMonitorSuite(MonitorSuite):

monitors = [
(your monitors)

]

monitors_finished_actions = [
actions to execute when suite finishes its execution

]

(continues on next page)

1.3. Monitoring your jobs 11

https://doc.scrapy.org/en/latest/topics/api.html#scrapy.crawler.Crawler
https://doc.scrapy.org/en/latest/topics/spiders.html?highlight=scrapy.Spider#scrapy.spiders.Spider

Spidermon Documentation

(continued from previous page)

monitors_failed_actions = [
actions to execute when suite finishes its execution with a failed monitor

]

settings.py
SPIDERMON_SPIDER_OPEN_MONITORS = (

list of monitor suites to be executed when the spider starts
)

SPIDERMON_SPIDER_CLOSE_MONITORS = (
list of monitor suites to be executed when the spider finishes

)

class MonitorSuite(name=None, monitors=None, monitors_finished_actions=None, moni-
tors_passed_actions=None, monitors_failed_actions=None, order=None,
crawler=None)

An instance of MonitorSuite defines a set of monitors and actions to be executed after the job finishes its
execution.

name suite name

monitors list of Monitor that will be executed if this suite is enabled.

monitors_finished_actions list of action classes that will be executed when all monitors finished their
execution.

monitors_passed_actions list of action classes that will be executed if all monitors passed.

monitors_failed_actions list of action classes that will be executed if at least one of the monitors
failed.

order if you have more than one suite enabled in your project, this integer defines the order of execution of
the suites

crawler crawler instance

on_monitors_finished(result)
Executed right after the monitors finished their execution and before any other action is executed.

result stats of the spider execution

on_monitors_passed(result)
Executed right after the monitors finished their execution but after the actions defined in moni-
tors_finished_actions were executed if all monitors passed.

result stats of the spider execution

on_monitors_failed(result)
Executed right after the monitors finished their execution but after the actions defined in moni-
tors_finished_actions were executed if at least one monitor failed.

result stats of the spider execution

1.3.3 Base Stat Monitor

Most of the monitors we create validate a numerical value from job stats against a configurable threshold. This is a
common pattern that leads us to create almost repeated code for any new monitor we add to our projects.

12 Chapter 1. Contents

Spidermon Documentation

To reduce the amount of boilerplate code, we have this base class that your custom monitor can inherit from and with
a few attributes you end with a full functional monitor that just needs to be added to your Monitor Suite to be used.

class spidermon.contrib.scrapy.monitors.base.BaseStatMonitor(methodName=’runTest’,
name=None)

Base Monitor class for stat-related monitors.

Create a monitor class inheriting from this class to have a custom monitor that validates numerical stats from
your job execution against a configurable threshold. If this threshold is passed in via command line arguments
(and not it the spider settings), the setting is read as a string and converted to threshold_datatype type
(default is float).

As an example, we will create a new monitor that will check if the value obtained in a job stat ‘numer-
ical_job_statistic’ is greater than or equal to the value configured in CUSTOM_STAT_THRESHOLD project
setting:

class MyCustomStatMonitor(BaseStatMonitor):
stat_name = "numerical_job_statistic"
threshold_setting = "CUSTOM_STAT_THRESHOLD"
assert_type = ">="

For the assert_type property you can select one of the following:

> Greater than
>= Greater than or equal
< Less than
<= Less than or equal
== Equal
!= Not equal

Sometimes, we don’t want a fixed threshold, but a dynamic based on more than one stat or getting data external
from the job execution (e.g., you want the threshold to be related to another stat, or you want to get the value of
a stat from a previous job).

As an example, the following monitor will use as threshold the a variable number of errors allowed based on the
number of items scraped. So this monitor will pass only if the number of errors is less than 1% of the number
of items scraped:

class MyCustomStatMonitor(BaseStatMonitor):
stat_name = "log_count/ERROR"
assert_type = "<"

def get_threshold(self):
item_scraped_count = self.stats.get("item_scraped_count")
return item_scraped_count * 0.01

By default, if the stat can’t be found in job statistics, the monitor will fail. If you want the monitor to be skipped
in that case, you should set fail_if_stat_missing attribute as False.

The following monitor will not fail if the job doesn’t have a numerical_job_statistic value in its
statistics:

class MyCustomStatMonitor(BaseStatMonitor):
stat_name = "numerical_job_statistic"
threshold_setting = "CUSTOM_STAT_THRESHOLD"
assert_type = ">="
fail_if_stat_missing = False

1.3. Monitoring your jobs 13

Spidermon Documentation

threshold_datatype
alias of builtins.float

1.3.4 The Basic Monitors

Spidermon has some batteries included :)

class spidermon.contrib.scrapy.monitors.monitors.CriticalCountMonitor(methodName=’runTest’,
name=None)

Check for critical errors in the spider log.

You can configure it using SPIDERMON_MAX_CRITICALS setting. There’s NO default value for this setting,
if you try to use this monitor without setting it, it’ll raise a NotConfigured exception.

If the job doesn’t have any critical error, the monitor will be skipped.

class spidermon.contrib.scrapy.monitors.monitors.DownloaderExceptionMonitor(methodName=’runTest’,
name=None)

This monitor checks if the amount of downloader exceptions (timeouts, rejected connections, etc.) is lesser or
equal to a specified threshold.

This amount is provided by downloader/exception_count value of your job statistics. If the value is
not available in the statistics (i.e., no exception was raised), the monitor will be skipped.

Configure the threshold using the SPIDERMON_MAX_DOWNLOADER_EXCEPTIONS setting. There’s NO de-
fault value for this setting. If you try to use this monitor without a value specified, a NotConfigured excep-
tion will be raised.

class spidermon.contrib.scrapy.monitors.monitors.ErrorCountMonitor(methodName=’runTest’,
name=None)

Check for errors in the spider log.

You can configure it using SPIDERMON_MAX_ERRORS setting. There’s NO default value for this setting, if
you try to use this monitor without setting it, it’ll raise a NotConfigured exception.

If the job doesn’t have any error, the monitor will be skipped.

class spidermon.contrib.scrapy.monitors.monitors.FieldCoverageMonitor(methodName=’runTest’,
name=None)

Validate if field coverage rules are met.

To use this monitor you need to enable the SPIDERMON_ADD_FIELD_COVERAGE setting, which will add
information about field coverage to your spider statistics.

To define your field coverage rules create a dictionary containing the expected coverage for each field you want
to monitor.

As an example, if the items you are returning from your spider are Python dictionaries with the following format:

{
"field_1": "some_value",
"field_2": "some_value",
"field_3": {

"field_3_1": "some_value",
"field_3_2": "some_value",

}
}

A set of rules may be defined as follows:

14 Chapter 1. Contents

Spidermon Documentation

project/settings.py
SPIDERMON_FIELD_COVERAGE_RULES = {

"dict/field_1": 0.4, # Expected 40% coverage for field_1
"dict/field_2": 1.0, # Expected 100% coverage for field_2
"dict/field_3": 0.8, # Expected 80% coverage for parent field_3
"dict/field_3/field_3_1": 0.5, # Expected 50% coverage for nested field_3_1

}

You are not obligated to set rules for every field, just for the ones in which you are interested. Also, you can
monitor nested fields if available in your returned items.

In case you have a job without items scraped, and you want to skip this test, you have to enable the
SPIDERMON_FIELD_COVERAGE_SKIP_IF_NO_ITEM setting to avoid the field coverage monitor error.

Warning: Rules for nested fields will be validated against the total number of items returned.

For the example below, rule for dict/field_3/field_3_1 will validate if 50% of all items returned
contains field_3_1, not just the ones that contain parent field_3.

Note: If you are returning an item type other than a dictionary, replace dict by the class name of the item you
are returning.

Considering you have an item defined as:

class MyCustomItem(scrapy.Item):
field_1 = scrapy.Field()
field_2 = scrapy.Field()

You must define the field coverage rules as follows:

SPIDERMON_FIELD_COVERAGE_RULES = {
"MyCustomItem/field_1": 0.4,
"MyCustomItem/field_2": 1.0,

}

class spidermon.contrib.scrapy.monitors.monitors.FinishReasonMonitor(methodName=’runTest’,
name=None)

Check if a job has a expected finish reason.

You can configure the expected reason with the SPIDERMON_EXPECTED_FINISH_REASONS, it should be
an iterable of valid finish reasons.

The default value of this settings is: ['finished',].

class spidermon.contrib.scrapy.monitors.monitors.ItemCountMonitor(methodName=’runTest’,
name=None)

Check if spider extracted the minimum number of items.

You can configure it using SPIDERMON_MIN_ITEMS setting. There’s NO default value for this setting, if you
try to use this monitor without setting it, it’ll raise a NotConfigured exception.

class spidermon.contrib.scrapy.monitors.monitors.ItemValidationMonitor(methodName=’runTest’,
name=None)

This monitor checks if the amount of validation errors is lesser or equal to a specified threshold.

This amount is provided by spidermon/validation/fields/errors value of your job statistics. If
the value is not available in the statistics (i.e., no validation errors), the monitor will be skipped.

1.3. Monitoring your jobs 15

Spidermon Documentation

Warning: You need to enable item validation in your project so this monitor can be used.

Configure the threshold using the SPIDERMON_MAX_ITEM_VALIDATION_ERRORS setting. There’s NO
default value for this setting. If you try to use this monitor without a value specified, a NotConfigured
exception will be raised.

class spidermon.contrib.scrapy.monitors.monitors.PeriodicExecutionTimeMonitor(methodName=’runTest’,
name=None)

Check for runtime exceeding a target maximum runtime.

You can configure the maximum runtime (in seconds) using SPIDERMON_MAX_EXECUTION_TIME as a
project setting or spider attribute.

class spidermon.contrib.scrapy.monitors.monitors.RetryCountMonitor(methodName=’runTest’,
name=None)

Check if any requests have reached the maximum amount of retries and the crawler had to drop those requests.

You can configure it using the SPIDERMON_MAX_RETRIES setting. The default is -1 which disables the
monitor.

class spidermon.contrib.scrapy.monitors.monitors.SuccessfulRequestsMonitor(methodName=’runTest’,
name=None)

Check the amount of successful requests.

You can configure it using the SPIDERMON_MIN_SUCCESSFUL_REQUESTS setting.

class spidermon.contrib.scrapy.monitors.monitors.TotalRequestsMonitor(methodName=’runTest’,
name=None)

Check the total amount of requests.

You can configure it using the SPIDERMON_MAX_REQUESTS_ALLOWED setting. The default is -1 which
disables the monitor.

class spidermon.contrib.scrapy.monitors.monitors.UnwantedHTTPCodesMonitor(methodName=’runTest’,
name=None)

Check for maximum number of unwanted HTTP codes. You can config-
ure it using SPIDERMON_UNWANTED_HTTP_CODES_MAX_COUNT setting or
SPIDERMON_UNWANTED_HTTP_CODES setting

This monitor fails if during the spider execution, we receive more than the number of
SPIDERMON_UNWANTED_HTTP_CODES_MAX_COUNT setting for at least one of the HTTP Status
Codes in the list defined in SPIDERMON_UNWANTED_HTTP_CODES setting.

Default values are:

SPIDERMON_UNWANTED_HTTP_CODES_MAX_COUNT = 10
SPIDERMON_UNWANTED_HTTP_CODES = [400, 407, 429, 500, 502, 503, 504, 523, 540, 541]

SPIDERMON_UNWANTED_HTTP_CODES can also be a dictionary with the HTTP Status Code as key and the
maximum number of accepted responses with that code.

With the following setting, the monitor will fail if more than 100 responses are 404 errors or at least one 500
error:

SPIDERMON_UNWANTED_HTTP_CODES = {
400: 100,
500: 0,

}

Furthermore, instead of being a numeric value, the code accepts a dictionary which can contain any of two
keys: max_count and max_percentage. The former refers to an absolute value and works the same way

16 Chapter 1. Contents

Spidermon Documentation

as setting an integer value. The latter refers to a max_percentage of the total number of requests the spider
made. If both are set, the monitor will fail if any of the conditions are met. If none are set, it will default to
DEFAULT_UNWANTED_HTTP_CODES_MAX_COUNT`.

With the following setting, the monitor will fail if it has at least one 500 error or if there are more than
min(100, 0.5 * total requests) 400 responses.

SPIDERMON_UNWANTED_HTTP_CODES = {
400: {"max_count": 100, "max_percentage": 0.5},
500: 0,

}

class spidermon.contrib.scrapy.monitors.monitors.WarningCountMonitor(methodName=’runTest’,
name=None)

Check for warnings in the spider log.

You can configure it using SPIDERMON_MAX_WARNINGS setting. There’s NO default value for this setting,
if you try to use this monitor without setting it, it’ll raise a NotConfigured exception.

If the job doesn’t have any warning, the monitor will be skipped.

class spidermon.contrib.scrapy.monitors.monitors.ZyteJobsComparisonMonitor(methodName=’runTest’,
name=None)

Note: This monitor is useful when running jobs in Zyte’s Scrapy Cloud.

Check for a drop in scraped item count compared to previous jobs.

You need to set the number of previous jobs to compare, using SPIDERMON_JOBS_COMPARISON. The default
is 0 which disables the monitor. We use the average of the scraped items count.

You can configure which percentage of the previous item count is the minimum acceptable, by using the setting
SPIDERMON_JOBS_COMPARISON_THRESHOLD. We expect a float number between 0.0 (not inclusive)
and with no upper limit (meaning we can check if itemcount is increasing at a certain rate). If not set, a
NotConfigured error will be raised.

You can filter which jobs to compare based on their states using the
SPIDERMON_JOBS_COMPARISON_STATES setting. The default value is ("finished",).

You can also filter which jobs to compare based on their tags using the
SPIDERMON_JOBS_COMPARISON_TAGS setting. Among the defined tags we consider only those
that are also present in the current job.

1.3.5 Is there a Basic Scrapy Suite ready to use?

Of course, there is! We really want to make it easy for you to monitor your spiders ;)

1.3. Monitoring your jobs 17

https://www.zyte.com/scrapy-cloud/

Spidermon Documentation

class spidermon.contrib.scrapy.monitors.suites.SpiderCloseMonitorSuite(name=None,
mon-
i-
tors=None,
mon-
i-
tors_finished_actions=None,
mon-
i-
tors_passed_actions=None,
mon-
i-
tors_failed_actions=None,
or-
der=None,
crawler=None)

This Monitor Suite implements the following monitors:

• monitors.ItemCountMonitor

• monitors.ItemValidationMonitor

• monitors.ErrorCountMonitor

• monitors.WarningCountMonitor

• monitors.FinishReasonMonitor

• monitors.UnwantedHTTPCodesMonitor

• monitors.FieldCoverageMonitor

• monitors.RetryCountMonitor

• monitors.DownloaderExceptionMonitor

• monitors.SuccessfulRequestsMonitor

• monitors.TotalRequestsMonitor

You can easily enable this monitor after enabling Spidermon:

SPIDERMON_SPIDER_CLOSE_MONITORS = (
'spidermon.contrib.scrapy.monitors.SpiderCloseMonitorSuite',

)

If you want only some of these monitors it’s easy to create your own suite with your own list of monitors similar to
this one.

1.3.6 Periodic Monitors

Sometimes we don’t want to wait until the end of the spider execution to monitor it. For example, we may want to be
notified as soon the number of errors reaches a value or close the spider if the time elapsed is greater than expected.

You define your Monitors and Monitor Suites the same way as before, but you need to provide the time interval (in
seconds) between each of the times the Monitor Suites is run.

In the following example, we defined a periodic monitor suite that will be executed every minute and will verify if the
number of errors found is lesser than a value. If not, the spider will be closed.

First we define a new action that will close the spider when executed:

18 Chapter 1. Contents

Spidermon Documentation

tutorial/actions.py
from spidermon.core.actions import Action

class CloseSpiderAction(Action):

def run_action(self):
spider = self.data['spider']
spider.logger.info("Closing spider")
spider.crawler.engine.close_spider(spider, 'closed_by_spidermon')

Then we create our monitor and monitor suite that verifies the number of errors and then take an action if it fails:

tutorial/monitors.py
from tutorial.actions import CloseSpiderAction

@monitors.name('Periodic job stats monitor')
class PeriodicJobStatsMonitor(Monitor, StatsMonitorMixin):

@monitors.name('Maximum number of errors reached')
def test_number_of_errors(self):

accepted_num_errors = 20
num_errors = self.data.stats.get('log_count/ERROR', 0)

msg = 'The job has exceeded the maximum number of errors'
self.assertLessEqual(num_errors, accepted_num_errors, msg=msg)

class PeriodicMonitorSuite(MonitorSuite):
monitors = [PeriodicJobStatsMonitor]
monitors_failed_actions = [CloseSpiderAction]

The last step is to configure the suite to be executed every 60 seconds:

tutorial/settings.py

SPIDERMON_PERIODIC_MONITORS = {
'tutorial.monitors.PeriodicMonitorSuite': 60, # time in seconds

}

1.3.7 What to monitor?

These are some of the usual metrics used in the monitors:

• the amount of items extracted by the spider.

• the amount of successful responses received by the spider.

• the amount of failed responses (server-side errors, network errors, proxy errors, etc.).

• the amount of requests that reach the maximum amount of retries and are finally discarded.

• the amount of time it takes to finish the crawl.

• the amount of errors in the log (spider errors, generic errors detected by Scrapy, etc.)

• the amount of bans.

• the job outcome (if it finishes without major issues or if it is closed prematurely because it detects too many
bans, for example).

• the amount of items that don’t contain a specific field or a set of fields

1.3. Monitoring your jobs 19

Spidermon Documentation

• the amount of items with validation errors (missing required fields, incorrect format, values that don’t match a
specific regular expression, strings that are too long/short, numeric values that are too high/low, etc.)

1.4 Item Validation

One useful feature when monitoring a spider is being able to validate your returned items against a defined schema.

Spidermon provides a mechanism that allows you to define an item schema and validation rules that will be executed
for each item returned. To enable the item validation feature, the first step is to enable the built-in item pipeline in your
project settings:

tutorial/settings.py
ITEM_PIPELINES = {

'spidermon.contrib.scrapy.pipelines.ItemValidationPipeline': 800,
}

Warning: Preferably, enable it as the last pipeline executed, ensuring that no subsequent pipeline changes the
content of the item, ignoring the validation already performed.

After that, you need to choose which validation library will be used. Spidermon accepts schemas defined using
schematics or JSON Schema.

1.4.1 With schematics

Schematics is a validation library based on ORM-like models. These models include some common data types and
validators, but they can also be extended to define custom validation rules.

Warning: You need to install schematics to use this feature.

Usually placed in validators.py file
from schematics.models import Model
from schematics.types import URLType, StringType, ListType

class QuoteItem(Model):
quote = StringType(required=True)
author = StringType(required=True)
author_url = URLType(required=True)
tags = ListType(StringType)

Check schematics documentation to learn how to define a model and how to extend the built-in data types.

1.4.2 With JSON Schema

JSON Schema is a powerful tool for validating the structure of JSON data. You can define which fields are required,
the type assigned to each field, a regular expression to validate the content and much more.

Warning: You need to install jsonschema to use this feature.

20 Chapter 1. Contents

https://schematics.readthedocs.io/en/latest/
https://json-schema.org/
https://schematics.readthedocs.io/en/latest/
https://schematics.readthedocs.io/en/latest/
https://schematics.readthedocs.io/en/latest/
https://json-schema.org/
https://pypi.org/project/jsonschema/

Spidermon Documentation

This guide explains the main keywords and how to generate a schema. Here we have an example of a schema for the
quotes item from the tutorial.

{
"$schema": "http://json-schema.org/draft-07/schema",
"type": "object",
"properties": {
"quote": {
"type": "string"

},
"author": {

"type": "string"
},
"author_url": {
"type": "string",
"pattern": ""

},
"tags": {

"type": "array",
"items": {

"type":"string"
}

}
},
"required": [
"quote",
"author",
"author_url"

]
}

1.4.3 Settings

These are the settings used for configuring item validation:

SPIDERMON_VALIDATION_ADD_ERRORS_TO_ITEMS

Default: False

When set to True, this adds a field called _validation to the item that contains any validation errors. You can change
the name of the field by assigning a name to SPIDERMON_VALIDATION_ERRORS_FIELD:

{
'_validation': defaultdict(<class 'list'>, {'author_url': ['Invalid URL']}),
'author': 'C.S. Lewis',
'author_url': 'invalid_url',
'quote': 'Some day you will be old enough to start reading fairy tales '

'again.',
'tags': ['age', 'fairytales', 'growing-up']

}

SPIDERMON_VALIDATION_DROP_ITEMS_WITH_ERRORS

Default: False

1.4. Item Validation 21

http://json-schema.org/learn/getting-started-step-by-step.html

Spidermon Documentation

Whether to drop items that contain validation errors.

SPIDERMON_VALIDATION_ERRORS_FIELD

Default: _validation

The name of the field added to the item when a validation error happens and SPIDER-
MON_VALIDATION_ADD_ERRORS_TO_ITEMS is enabled.

SPIDERMON_VALIDATION_MODELS

Default: None

A list containing the schematics models that contain the definition of the items that need to be validated.

settings.py

SPIDERMON_VALIDATION_MODELS = [
'tutorial.validators.DummyItemModel'

]

If you are working on a spider that produces multiple items types, you can define it as a dict:

settings.py

from tutorial.items import DummyItem, OtherItem

SPIDERMON_VALIDATION_MODELS = {
DummyItem: 'tutorial.validators.DummyItemModel',
OtherItem: 'tutorial.validators.OtherItemModel',

}

SPIDERMON_VALIDATION_SCHEMAS

Default: None

A list containing the location of the item schema. Could be a local path or a URL.

settings.py

SPIDERMON_VALIDATION_SCHEMAS = [
'/path/to/schema.json',
's3://bucket/schema.json',
'https://example.com/schema.json',

]

If you are working on a spider that produces multiple items types, you can define it as a dict:

settings.py

from tutorial.items import DummyItem, OtherItem

SPIDERMON_VALIDATION_SCHEMAS = {
DummyItem: '/path/to/dummyitem_schema.json',
OtherItem: '/path/to/otheritem_schema.json',

}

22 Chapter 1. Contents

https://schematics.readthedocs.io/en/latest/usage/models.html

Spidermon Documentation

1.4.4 Validation in Monitors

You can build a monitor that checks the validation problems and raises errors if there are too many. You can
base it on spidermon.contrib.monitors.mixins.ValidationMonitorMixin which provides meth-
ods that can be useful for this. There are 2 groups of methods, for checking all validation errors and specifically for
checking missing_required_field errors. All of these methods rely on the job stats, reading spidermon/
validation/fields/errors/* entries.

• check_missing_required_fields, check_missing_required_field - check that number of
missing_required_field errors is less than the specified threshold.

• check_missing_required_fields_percent, check_missing_required_field_percent
- check that percent of missing_required_field errors is less than the specified threshold.

• check_fields_errors, check_field_errors - check that the number of specified (or all) errors is
less than the specified threshold.

• check_fields_errors_percent, check_field_errors_percent - check that the percent of
specified (or all) errors is less than the specified threshold.

All *_field method take a name of one field, while all *_fields method take a list of field names.

Warning: The default behavior for *_fields methods when no field names is passed is to combine error counts
for all fields instead of checking each field separately. This is usually not very useful and inconsistent with the
behavior when a list of fields is passed, so you should set the correct_field_list_handling monitor
attribute to get the correct behavior. This will be the default in some later version.

Note: The *_percent methods receive the ratio, not the percent number, so for 15% you need to pass 0.15.

Some examples:

checks that each of field2 and field3 is missing in no more than 10 items
self.check_missing_required_fields(field_names=['field2', 'field3'], allowed_count=10)

checks that field2 has errors in no more than 15% of items
self.check_field_errors_percent(field_name='field2', allowed_percent=0.15)

checks that no errors is present in any fields
self.check_field_errors_percent()

1.5 Expression Monitors

Expressions Monitors are Monitors created on-the-fly when Spidermon extension initializes. They can create tests
based on simple expressions defined in a dictionary in your settings like:

SPIDERMON_SPIDER_OPEN_EXPRESSION_MONITORS = [
{

"name": "DumbChecksMonitor",
"tests": [

{
"name": "test_spider_name",
"expression": "spider.name == 'httpbin'",

(continues on next page)

1.5. Expression Monitors 23

Spidermon Documentation

(continued from previous page)

},
],

},
]

The definition of each monitor should follow the expression monitor schema.

Use the following settings to configure expression monitors:

• SPIDERMON_SPIDER_OPEN_EXPRESSION_MONITORS

• SPIDERMON_SPIDER_CLOSE_EXPRESSION_MONITORS

• SPIDERMON_ENGINE_STOP_EXPRESSION_MONITORS

You have the following objects available to be used in your expression:

• stats

• crawler

• spider

• job

• validation

• responses

Note: Notice that not the full-set of the Python Language features are available to the expressions, only the ones that
makes sense for a simple expressions that should evaluate to True or False.

To have a more deep understand about which features of the language are available please refer to spidermon.
python.interpreter.Interpreter.

1.5.1 How to create an expression monitor

First you need to choose when you want to run your expression monitors.

You can use SPIDERMON_SPIDER_OPEN_EXPRESSION_MONITORS to run a monitor when a spider opens, or
SPIDERMON_SPIDER_CLOSE_EXPRESSION_MONITORS if you want to run a monitor when a spider is closed.

There’s also the SPIDERMON_ENGINE_STOP_EXPRESSION_MONITORS setting to run a monitor once the engine
has stopped.

Here’s an example of how to declare two ExpressionMonitors.

The first monitor with two tests, one for checking the spider name and other test to check if the crawler is there. The
2nd monitor will check if the spider finished with finished:

[
{

"name": "DumbChecksMonitor",
"description": "My expression monitor",
"tests": [

{
"name": "test_spider_name",
"description": "Test spider name",
"expression": "spider.name == 'httpbin'",

(continues on next page)

24 Chapter 1. Contents

Spidermon Documentation

(continued from previous page)

},
{

"name": "test_crawler_exists",
"description": "Test Crawler exists",
"expression": "crawler is not None"

}
],

},
{

"name": "FinishedOkMonitor",
"description": "My expression monitor 2",
"tests": [

{
"name": "test_finish_reason",
"description": "Test finish reason",
"expression": 'stats["finish_reason"] == "finished"',

}
],

}
]

1.5.2 Expression monitor schema

Each expression monitor should follow this schema:

{
"type": "object",
"properties": {

"name": {"type": "string", "minLength": 1},
"description": {"type": "string", "minLength": 1},
"tests": {

"type": "array",
"items": {

"type": "object",
"properties": {

"name": {"type": "string", "minLength": 1},
"description": {"type": "string", "minLength": 1},
"expression": {"type": "string", "minLength": 1},
"fail_reason": {"type": "string", "minLength": 1},

},
"required": ["name", "expression"],

},
},

},
"required": ["name", "tests"],

}

1.6 Settings

The Spidermon settings allow you to customize the behaviour of your monitors enabling, disabling and configuring
features like enabled monitors, monitor actions, item validation and notifications.

1.6. Settings 25

Spidermon Documentation

1.6.1 Built-in settings reference

Here’s a list of all available Spidermons settings, in alphabetical order, along with their default values and the scope
where they apply. These settings must be defined in settings.py file of your Scrapy project.

SPIDERMON_ENABLED

Default: False

Whether to enable Spidermon.

SPIDERMON_EXPRESSIONS_MONITOR_CLASS

Default: spidermon.python.monitors.ExpressionMonitor

A subclass of spidermon.python.monitors.ExpressionMonitor.

This class will be used to generate expression monitors.

• SPIDERMON_SPIDER_CLOSE_EXPRESSION_MONITORS

• SPIDERMON_SPIDER_OPEN_EXPRESSION_MONITORS

• SPIDERMON_ENGINE_STOP_EXPRESSION_MONITORS

Note: You probably will not change this setting unless you have an advanced use case and needs to change how the
context data is build or how the on-the-fly MonitorSuite are generated. Otherwise the default should be enough.

SPIDERMON_PERIODIC_MONITORS

Default: {}

A dict containing the monitor suites that must be executed periodically as key and the time interval (in seconds)
between the executions as value.

For example, the following suite will be executed every 30 minutes:

SPIDERMON_PERIODIC_MONITORS = {
'tutorial.monitors.PeriodicMonitorSuite': 1800,

}

SPIDERMON_SPIDER_CLOSE_MONITORS

Default: []

List of monitor suites to be executed when the spider closes.

SPIDERMON_SPIDER_CLOSE_EXPRESSION_MONITORS

Default: []

List of dictionaries describing expression monitors to run when a spider is closed.

26 Chapter 1. Contents

Spidermon Documentation

SPIDERMON_SPIDER_OPEN_MONITORS

Default: []

List of monitor suites to be executed when the spider starts.

SPIDERMON_SPIDER_OPEN_EXPRESSION_MONITORS

Default: []

List of dictionaries describing expression monitors to run when a spider is opened.

SPIDERMON_ENGINE_STOP_MONITORS

List of monitor suites to be executed when the crawler engine is stopped.

SPIDERMON_ENGINE_STOP_EXPRESSION_MONITORS

Default: []

List of dictionaries describing expression monitors to run when the engine is stopped.

SPIDERMON_ADD_FIELD_COVERAGE

Default: False

When enabled, Spidermon will add statistics about the number of items scraped and coverage for each existing field
following this format:

'spidermon_item_scraped_count/<item_type>/<field_name>': <item_count>
'spidermon_field_coverage/<item_type>/<field_name>': <coverage>

Note: Nested fields are also supported. For example, if your spider returns these items:

[
{
"field_1": {

"nested_field_1_1": "value",
"nested_field_1_2": "value",

},
},
{
"field_1": {

"nested_field_1_1": "value",
},
"field_2": "value"

},
]

Statistics will be like the following:

1.6. Settings 27

Spidermon Documentation

'spidermon_item_scraped_count/dict': 2,
'spidermon_item_scraped_count/dict/field_1': 2,
'spidermon_item_scraped_count/dict/field_1/nested_field_1_1': 2,
'spidermon_item_scraped_count/dict/field_1/nested_field_1_2': 1,
'spidermon_item_scraped_count/dict/field_2': 1,
'spidermon_field_coverage/dict/field_1': 1,
'spidermon_field_coverage/dict/field_1/nested_field_1_1': 1,
'spidermon_field_coverage/dict/field_1/nested_field_1_2': 0.5,
'spidermon_item_scraped_count/dict/field_2': 0.5,

SPIDERMON_FIELD_COVERAGE_SKIP_NONE

Default: False

When enabled, returned fields that have None as value will not be counted as fields with a value.

Considering your spider returns the following items:

[
{
"field_1": None,
"field_2": "value",

},
{
"field_1": "value",
"field_2": "value",

},
]

If this setting is set to True, spider statistics will be:

'spidermon_item_scraped_count/dict': 2,
'spidermon_item_scraped_count/dict/field_1': 1, # Ignored None value
'spidermon_item_scraped_count/dict/field_2': 2,
'spidermon_field_coverage/dict/field_1': 0.5, # Ignored None value
'spidermon_item_scraped_count/dict/field_2': 1,

If this setting is not provided or set to False, spider statistics will be:

'spidermon_item_scraped_count/dict': 2,
'spidermon_item_scraped_count/dict/field_1': 2, # Did not ignore None value
'spidermon_item_scraped_count/dict/field_2': 2,
'spidermon_field_coverage/dict/field_1': 1, # Did not ignore None value
'spidermon_item_scraped_count/dict/field_2': 1,

1.7 “How-to” guides

1.7.1 How do I add required fields coverage validation?

When you enable Item Validation in your project you can use ValidationMonitorMixin in your monitor, which allows
you to perform some extra checks on your results.

28 Chapter 1. Contents

Spidermon Documentation

Considering that we have the validation schema from the Getting started section of our documentation, where the
author field is required, we want to add a new monitor to ensure that no more than 20% of the items returned have the
author not filled.

Note: The methods that will be presented next only work to check coverage of fields that are defined as required in
your validation schema.

ValidationMonitorMixin gives you the check_missing_required_fields_percent method, which receives a list of field
names and the maximum percentage allowed not to be filled. Using that we can create a monitor that enforces our
validation rule:

from spidermon import Monitor
from spidermon.contrib.monitors.mixins import ValidationMonitorMixin

class CoverageValidationMonitor(Monitor, ValidationMonitorMixin):

def test_required_fields_with_minimum_coverage(self):
allowed_missing_percentage = 0.2
self.check_missing_required_fields_percent(

field_names=["author"],
allowed_percent=allowed_missing_percentage

)

We also have the option to set an absolute amount of items that we want to allow not to be filled. This requires us to
use the check_missing_required_fields method. The following monitor will fail if more than 10 items returned do not
have the author field filled.

class CoverageValidationMonitor(Monitor, ValidationMonitorMixin):

def test_required_fields_with_minimum_coverage(self):
allowed_missing_items = 10
self.check_missing_required_fields(

field_names=["author"],
allowed_count=allowed_missing_items

)

Multiple fields

What if we want to validate more than one field? There are two different ways, depending on whether you want to use
the same thresholds for both fields or a different one for each field.

Using the same threshold, we just need to pass a list with the field names to the desired validation method as follows:

class CoverageValidationMonitor(Monitor, ValidationMonitorMixin):

def test_required_fields_with_minimum_coverage(self):
allowed_missing_percentage = 0.2
self.check_missing_required_fields_percent(

field_names=["author", "author_url"],
allowed_percent=allowed_missing_percentage

)

However, if you want a different rule for different fields, you need to create a new monitor for each field:

1.7. “How-to” guides 29

Spidermon Documentation

class CoverageValidationMonitor(Monitor, ValidationMonitorMixin):

def test_min_coverage_author_field(self):
allowed_missing_percentage = 0.2
self.check_missing_required_fields_percent(

field_names=["author"],
allowed_percent=allowed_missing_percentage

)

def test_min_coverage_author_url_field(self):
allowed_missing_items = 10
self.check_missing_required_fields(

field_names=["author_url"],
allowed_count=allowed_missing_items

)

1.7.2 How do I configure a Slack bot for Spidermon?

What are bots?

A bot is a type of Slack App designed to interact with users via conversation.

To work with Slack Actions, you will need a Slack bot which would send notifications to your Slack workspace from
Spidermon.

Steps

1. Create a Slack bot app.

2. Go to the OAuth & Permissions tab on the left sidebar.

3. Under Bot Token Scopes make sure the bot has the chat:write permission.

4. Once the bot is installed to your workspace, copy the Bot User OAuth Access Token from this tab. This Bot
User OAuth Access Token is what we use for SPIDERMON_SLACK_SENDER_TOKEN.

5. Lastly, add your Slack credentials to your Scrapy project’s settings.

settings.py
SPIDERMON_SLACK_SENDER_TOKEN = 'YOUR_BOT_USER_OAUTH_ACCESS_TOKEN'
SPIDERMON_SLACK_SENDER_NAME = 'YOUR_BOT_USERNAME'
SPIDERMON_SLACK_RECIPIENTS = ['@yourself', '#yourprojectchannel']

1.7.3 How do I configure a Telegram bot for Spidermon?

What are bots?

A bot is a type of Telegram user designed to interact with users via conversation.

To work with Telegram Actions, you will need a Telegram bot which would send notifications to Telegram from
Spidermon.

30 Chapter 1. Contents

https://get.slack.help/hc/en-us/articles/115005265703-Create-a-bot-for-your-workspace

Spidermon Documentation

Steps

1. Create a Telegram bot.

2. Once your bot is created, you will receive its Authorization Token. This Bot Authorization Token is what we use
for SPIDERMON_TELEGRAM_SENDER_TOKEN.

3. Add your Telegram bot credentials to your Scrapy project’s settings.

4. Add the recipients to your Scrapy project’s settings, getting the chat_id or group_id is not straightforward, there
is an info bot that can help with this. Just forward a message from the user or group that you want to receive
Spidermon notifications to [@GroupIDbot](https://t.me/GroupIDbot) and it will reply with the id. To forward a
message from a group to the bot, you need to add the bot to that group before.

5. For notifications in groups: Add your self-created bot (from step 1.) to your group. For notifications in channels:
Add your self-created bot (from step 1.) as administrator to your channel (not possible in browser version).

settings.py
SPIDERMON_TELEGRAM_SENDER_TOKEN = 'YOUR_BOT_AUTHORIZATION_TOKEN'
SPIDERMON_TELEGRAM_RECIPIENTS = ['chat_id', 'group_id', '@channelname']

1.7.4 How do I configure a Discord bot for Spidermon?

What are bots?

A bot is a type of Discord user designed to interact with users via conversation.

To work with Discord Actions, you will need a Discord webhook which would send notifications to Discord from
Spidermon.

Steps

1. Create a Discord webhook <https://discord.com/developers/docs/resources/webhook>‘_.

2. Once your webhook is created, you will receive its URL. This is what we use for
SPIDERMON_DISCORD_WEBHOOK_URL.

3. Add your Discord bot credential to your Scrapy project’s settings. That’s it.

settings.py
SPIDERMON_DISCORD_WEBHOOK_URL = "DISCORD_WEBHOOK_URL"

1.7.5 How do I compare Spider executions?

Sometimes it is worthy to compare results from previous executions of your spider. For example, we should be able
to track whether the number of items returned is lower than previous executions, which may indicate a problem.

Scrapy allows you to collect stats in the form key/value, but these stats are lost when the spider finishes its execution.
Spidermon provides a built-in stats collector that stores the stats of all spider executions in your local file system.

After enabling this stats collector, every spider instance running will have a stats_history attribute containing a
list of the stats of the previous spider executions that can be easily accessed in your monitors.

To enable it, include the following code in your project settings:

1.7. “How-to” guides 31

https://core.telegram.org/bots#how-do-i-create-a-bot
https://telegram.org/faq#q-how-do-i-add-more-members-what-39s-an-invite-link
https://discord.com/developers/docs/resources/webhook

Spidermon Documentation

tutorial/settings.py
STATS_CLASS = (

"spidermon.contrib.stats.statscollectors.local_storage.
→˓LocalStorageStatsHistoryCollector"
)

Stores the stats of the last 10 spider execution (default=100)
SPIDERMON_MAX_STORED_STATS = 10

The following example shows how we can verify whether the number of items returned in the current spider execution
is higher than 90% of the mean of items returned in the previous spider executions.

tutorial/monitors.py
from spidermon import Monitor, MonitorSuite, monitors

@monitors.name("History Validation")
class HistoryMonitor(Monitor):

@monitors.name("Expected number of items extracted")
def test_expected_number_of_items_extracted(self):

spider = self.data["spider"]
total_previous_jobs = len(spider.stats_history)
if total_previous_jobs == 0:

return

previous_item_extracted_mean = (
sum(

previous_job["item_scraped_count"]
for previous_job in spider.stats_history

)
/ total_previous_jobs

)
items_extracted = self.data.stats["item_scraped_count"]

Minimum number of items we expect to be extracted
minimum_threshold = 0.9 * previous_item_extracted_mean

self.assertFalse(
items_extracted <= minimum_threshold,
msg="Expected at least {} items extracted.".format(

minimum_threshold
),

)

class SpiderCloseMonitorSuite(MonitorSuite):
monitors = [HistoryMonitor]

When running on Scrapy Cloud you can use spidermon.contrib.stats.statscollectors.
sc_collections.ScrapyCloudCollectionsStatsHistoryCollector instead. This will save your
stats in a collection on your scrapy dashboard, named like {your_spider_name}_stats_history. The rest
of the sample code presented previously will work unchanged.

Warning: STATS_CLASS is overriden by default in Scrapy Cloud. You need to man-
ually include spidermon.contrib.stats.statscollectors.sc_collections.
DashCollectionsStatsHistoryCollector in your spider settings.

32 Chapter 1. Contents

https://www.zyte.com/scrapy-cloud/
https://docs.zyte.com/scrapy-cloud/collections.html
https://docs.scrapy.org/en/latest/topics/settings.html#stats-class
https://www.zyte.com/scrapy-cloud/
https://support.zyte.com/support/solutions/articles/22000200670-customizing-scrapy-settings-in-scrapy-cloud

Spidermon Documentation

1.8 Actions

By default, when a monitor suite finishes, the pass/fail information is included in the spider logs, which would be
enough during development but useless when you are monitoring several spiders.

Spidermon allows you to define actions that are ran after the monitors finish. You can define your own actions or use
one of the existing built-in actions.

1.8.1 Email action

Spidermon provides two built-in actions that can be used to send email reports in the configuration of a monitor suite.

• SendSESEmail uses Amazon Simple Email Service as the method to send your emails.

• SendSmtpEmail uses SMTP as the method to send your emails.

Basic usage of both actions are very similar. You just need to configure the desired action in you monitor suite and
configure a few specific settings depending on the action you choose.

For example, to send an email report using Amazon Simple Email Service when your DummyMonitorSuite fin-
ishes, you can use:

from spidermon.contrib.actions.email.ses import SendSESEmail

class DummyMonitorSuite(MonitorSuite):
monitors = [

DummyMonitor,
]

monitors_finished_actions = [
SendSESEmail,

]

A second example, if you want to send an email report using SMTP when your DummyMonitorSuite finishes and
some monitor fails, you can use:

from spidermon.contrib.actions.email.smtp import SendSmtpEmail

class DummyMonitorSuite(MonitorSuite):
monitors = [

DummyMonitor,
]

monitors_failed_actions = [
SendSmtpEmail,

]

By default Spidermon uses a HTML template that can be altered in SPIDERMON_BODY_HTML_TEMPLATE setting.
You can use Jinja2 as your template engine.

The result of a report generated using this default template may be seen next:

1.8. Actions 33

https://aws.amazon.com/pt/ses/
https://datatracker.ietf.org/doc/html/rfc821
https://aws.amazon.com/pt/ses/
https://datatracker.ietf.org/doc/html/rfc821
http://jinja.pocoo.org/

Spidermon Documentation

Available settings

The following settings are used by all email actions (SmtpSendEmail or SendSESEmail).

SPIDERMON_EMAIL_SENDER

Default: None

Address of the sender of the email notification.

SPIDERMON_EMAIL_TO

Default: None

List of all recipients of the email notification.

34 Chapter 1. Contents

Spidermon Documentation

The following settings can be used to improve the action:

SPIDERMON_BODY_HTML

Default: None

SPIDERMON_BODY_HTML_TEMPLATE

String containing the location of the Jinja2 template for the Spidermon email report.

Default reports/email/monitors/result.jinja.

SPIDERMON_BODY_TEXT

SPIDERMON_BODY_TEXT_TEMPLATE

SPIDERMON_EMAIL_BCC

Default: None

SPIDERMON_EMAIL_CONTEXT

Default: None

SPIDERMON_EMAIL_CC

Default: None

SPIDERMON_EMAIL_FAKE

Default: False

If set True, the email content will be in the logs but no email will be sent.

SPIDERMON_EMAIL_REPLY_TO

SPIDERMON_EMAIL_SUBJECT

SPIDERMON_EMAIL_SUBJECT_TEMPLATE

Amazon SES action settings

The following settings are needed only if you are using SendSESEmail action.

1.8. Actions 35

http://jinja.pocoo.org/

Spidermon Documentation

SPIDERMON_AWS_ACCESS_KEY

Default: None

AWS Access Key.

Warning: This setting has been deprecated in preference of SPIDERMON_AWS_ACCESS_KEY_ID.

SPIDERMON_AWS_SECRET_KEY

Default: None

AWS Secret Key.

Warning: This setting has been deprecated in preference of SPIDERMON_AWS_SECRET_ACCESS_KEY.

SPIDERMON_AWS_ACCESS_KEY_ID

Default: None

AWS Access Key. If not set, it defaults to AWS_ACCESS_KEY_ID (scrapy credentials for AWS S3 storage).

SPIDERMON_AWS_SECRET_ACCESS_KEY

Default: None

AWS Secret Key. If not set, it defaults to AWS_SECRET_ACCESS_KEY (scrapy credentials for AWS S3 storage).

SPIDERMON_AWS_REGION_NAME

AWS Region.

Default: us-east-1

SPIDERMON_AWS_RETURN_PATH

Reply-To email address.

Default: None (replies will go to sender email address)

SMTP action settings

The following settings are needed only if you are using SmtpSendEmail action.

SPIDERMON_SMTP_HOST

The host of your SMTP server.

36 Chapter 1. Contents

https://docs.scrapy.org/en/latest/topics/settings.html#aws-access-key-id
https://docs.scrapy.org/en/latest/topics/settings.html#aws-secret-access-key
https://datatracker.ietf.org/doc/html/rfc821

Spidermon Documentation

SPIDERMON_SMTP_PORT

The port of your SMTP server.

Default: 25

SPIDERMON_SMTP_USER

The user of your SMTP server.

SPIDERMON_SMTP_PASSWORD

The password of your SMTP server.

SPIDERMON_SMTP_ENFORCE_TLS

Enforce using SMTP STARTTLS.

Default: False

SPIDERMON_SMTP_ENFORCE_SSL

Enforce using a secure SSL connection.

Default: False

1.8.2 Slack action

This action allows you to send custom messages to a Slack channel (or user) using a bot when your monitor suites
finish their execution.

To use this action you need to:

1. Install slackclient 2.0 or higher:

$ pip install "slackclient>=2.0"

2. Provide the Slack credentials in your settings.py file as follows:

settings.py
SPIDERMON_SLACK_SENDER_TOKEN = '<SLACK_SENDER_TOKEN>'
SPIDERMON_SLACK_SENDER_NAME = '<SLACK_SENDER_NAME>'
SPIDERMON_SLACK_RECIPIENTS = ['@yourself', '#yourprojectchannel']

A notification will look like the following one:

Follow these steps to configure your Slack bot.

1.8. Actions 37

https://datatracker.ietf.org/doc/html/rfc821
https://datatracker.ietf.org/doc/html/rfc821
https://datatracker.ietf.org/doc/html/rfc821
https://slack.com/
https://pypi.org/project/slackclient/
https://api.slack.com/docs/token-types

Spidermon Documentation

The following settings are the minimum needed to make this action works:

SPIDERMON_SLACK_RECIPIENTS

List of recipients of the message. It could be a channel or an user.

SPIDERMON_SLACK_SENDER_NAME

Username of your bot.

SPIDERMON_SLACK_SENDER_TOKEN

Bot User OAuth Access Token of your bot.

Warning: Be careful when using bot user tokens in Spidermon. Do not publish bot user tokens in public code
repositories.

Other settings available:

SPIDERMON_SLACK_ATTACHMENTS

Default None

A string representing a slack message attachment JSON block.

SPIDERMON_SLACK_ATTACHMENTS_TEMPLATE

Default None

Absolute path to a Jinja2 template from which slack messages will be constructed from. If None it will use the default
template from the notifier templates folder.

SPIDERMON_SLACK_FAKE

Default: False

If set True, the Slack message content will be in the logs but nothing will be sent.

SPIDERMON_SLACK_INCLUDE_ATTACHMENTS

Default True

Include attachment content in slack notification.

SPIDERMON_SLACK_INCLUDE_MESSAGE

Default True

Include message content in slack notification.

38 Chapter 1. Contents

https://api.slack.com/reference/messaging/attachments
http://jinja.pocoo.org/
https://github.com/scrapinghub/spidermon/tree/master/spidermon/contrib/actions/slack/templates/slack/spider/notifier

Spidermon Documentation

SPIDERMON_SLACK_MESSAGE

Default None

A string representing containing standard text to send as a slack message.

SPIDERMON_SLACK_MESSAGE_TEMPLATE

Default: None

Absolute path to a Jinja2 template from which slack messages will be constructed from. If None it will use the default
template from the notifier templates folder.

SPIDERMON_SLACK_NOTIFIER_INCLUDE_ERROR_ATTACHMENTS

Default: True

For SendSlackMessageSpiderFinished notifier only. Whether to include attachments in error notification messages.

SPIDERMON_SLACK_NOTIFIER_INCLUDE_OK_ATTACHMENTS

Default: False

For SendSlackMessageSpiderFinished notifier only. Whether to include attachments in ok notification messages.

SPIDERMON_SLACK_NOTIFIER_INCLUDE_REPORT_LINK

Default: False

For SendSlackMessageSpiderFinished notifier only. Whether to include a link to a spidermon report. See file report
actions.

SPIDERMON_SLACK_NOTIFIER_REPORT_INDEX

Default: 0

For SendSlackMessageSpiderFinished notifier only. The index of the report to link if multiple reports generated. See
file report actions.

1.8.3 Telegram action

This action allows you to send custom messages to a Telegram channel, group or user using a bot when your monitor
suites finish their execution.

To use this action you need to provide the Telegram bot token in your settings.py file as follows:

settings.py
SPIDERMON_TELEGRAM_SENDER_TOKEN = '<TELEGRAM_SENDER_TOKEN>'
SPIDERMON_TELEGRAM_RECIPIENTS = ['chatid', 'groupid' '@channelname']

1.8. Actions 39

http://jinja.pocoo.org/
https://github.com/scrapinghub/spidermon/tree/master/spidermon/contrib/actions/slack/templates/slack/spider/notifier
https://spidermon.readthedocs.io/en/latest/actions/file-report-action.html
https://spidermon.readthedocs.io/en/latest/actions/file-report-action.html
https://spidermon.readthedocs.io/en/latest/actions/file-report-action.html
https://telegram.org/
https://core.telegram.org/bots

Spidermon Documentation

A notification will look like the following:

Follow these steps to configure your Telegram bot.

The following settings are the minimum needed to make this action work:

SPIDERMON_TELEGRAM_RECIPIENTS

List of recipients of the message. It could be a user id, group id or channel name.

SPIDERMON_TELEGRAM_SENDER_TOKEN

Bot Authorization Token of your bot.

Warning: Be careful when using bot user tokens in Spidermon. Do not publish bot user tokens in public code
repositories.

Other settings available:

SPIDERMON_TELEGRAM_FAKE

Default: False

If set True, the Telegram message content will be in the logs but nothing will be sent.

SPIDERMON_TELEGRAM_MESSAGE

The message to be sent, it supports Jinja2 template formatting.

SPIDERMON_TELEGRAM_MESSAGE_TEMPLATE

Path to a Jinja2 template file to format messages sent by the Telegram Action.

1.8.4 Discord action

This action allows you to send custom messages to a Discord channel using a bot when your monitor suites finish their
execution.

To use this action you need to provide the Discord webhook URL in your settings.py file as follows:

settings.py
SPIDERMON_DISCORD_WEBHOOK_URL = "<DISCORD_WEBHOOK_URL>"

A notification will look like the following:

40 Chapter 1. Contents

https://discord.com/
https://discord.com/developers/docs/resources/webhook

Spidermon Documentation

Follow these steps to configure your Discord bot.

The following settings are the minimum needed to make this action work:

SPIDERMON_DISCORD_WEBHOOK_URL

Webhook URL of your bot.

Warning: Be careful when using bot webhooks URL in Spidermon. Do not publish them in public code reposi-
tories.

Other settings available:

_SPIDERMON_DISCORD_FAKE

Default: False

If set True, the Discord message content will be in the logs but nothing will be sent.

SPIDERMON_DISCORD_MESSAGE

The message to be sent, it supports Jinja2 template formatting.

SPIDERMON_DISCORD_MESSAGE_TEMPLATE

Path to a Jinja2 template file to format messages sent by the Discord Action.

1.8.5 Job tags action

If you are running your spider using the Scrapy Cloud you are able to include tags in your jobs. Spidermon includes
two actions that may be used to add or to remove tags to your jobs depending on the result of the monitoring.

In this example, considering that you defined a running tag when you start the job in Scrapy Cloud, if the job passes
without errors, it will remove this tag. If the job fails the failed tag will be added to the job so you can easily look for
failed jobs.

monitors.py
from spidermon.contrib.actions.jobs.tags import AddJobTags, RemoveJobTags

class DummyMonitorSuite(MonitorSuite):
monitors = [

DummyMonitor,
]

monitors_passed_actions = [

(continues on next page)

1.8. Actions 41

https://zyte.com/scrapy-cloud
https://zyte.com/scrapy-cloud

Spidermon Documentation

(continued from previous page)

RemoveJobTags,
]

monitors_failed_actions = [
AddJobTags,

]

settings.py
SPIDERMON_JOB_TAGS_TO_ADD = ['failed',]
SPIDERMON_JOB_TAGS_TO_REMOVE = ['running',]

By default we have the following settings when using these two actions:

SPIDERMON_JOB_TAGS_TO_ADD

List of tags to be included when AddJobTags is executed.

SPIDERMON_JOB_TAGS_TO_REMOVE

List of tags to be removed when RemoveJobTags is executed.

If you want to have different rules adding or removing tags for different results of the monitoring, you need to create a
custom action class including the name of the setting that will contain the list of tags that will be included in the job:

monitors.py
from spidermon.contrib.actions.jobs.tags import AddJobTags

class AddJobTagsPassed(AddJobTags):
tag_settings = 'TAG_TO_ADD_WHEN_PASS'

class AddJobTagsFailed(AddJobTags):
tag_settings = 'TAG_TO_ADD_WHEN_FAIL'

class DummyMonitorSuite(MonitorSuite):
monitors = [

DummyMonitor,
]

monitors_passed_actions = [
AddJobTagsPassed,

]

monitors_failed_actions = [
AddJobTagsFailed,

]

settings.py
TAG_TO_ADD_WHEN_PASS = ['passed',]
TAG_TO_ADD_WHEN_FAIL = ['failed',]

1.8.6 File Report Action

This action allows to create a file report based on a template. You can use Jinja2 as your template engine.

42 Chapter 1. Contents

http://jinja.pocoo.org/

Spidermon Documentation

In this example we will create a file called my_report.html when the monitor suite finishes:

monitors.py
from spidermon.contrib.actions.reports.files import CreateFileReport

class DummyMonitorSuite(MonitorSuite):
monitors = [

DummyMonitor,
]

monitors_finished_actions = [
CreateFileReport,

]

settings.py
SPIDERMON_REPORT_TEMPLATE = 'reports/email/monitors/result.jinja'
SPIDERMON_REPORT_CONTEXT = {

'report_title': 'Spidermon File Report'
}
SPIDERMON_REPORT_FILENAME = 'my_report.html'

Settings available:

SPIDERMON_REPORT_CONTEXT

Dictionary containing context variables to be included in your report.

SPIDERMON_REPORT_FILENAME

String containing the path of the generated report file.

SPIDERMON_REPORT_TEMPLATE

String containing the location of the template for the file report.

1.8.7 S3 Report action

This action works exactly like File Report Action but instead of saving the generated report locally, it uploads it to a
S3 Amazon Bucket.

Settings available:

SPIDERMON_REPORT_S3_BUCKET

SPIDERMON_REPORT_S3_CONTENT_TYPE

SPIDERMON_REPORT_S3_FILENAME

SPIDERMON_REPORT_S3_MAKE_PUBLIC

1.8. Actions 43

Spidermon Documentation

SPIDERMON_REPORT_S3_REGION_ENDPOINT

1.8.8 Sentry action

This action allows you to send custom messages to Sentry when your monitor suites finish their execution. To use this
action you need to provide the Sentry DSN in your settings.py file as follows:

settings.py
SPIDERMON_SENTRY_DSN = '<SENTRY_DSN_URL>'
SPIDERMON_SENTRY_PROJECT_NAME = '<PROJECT_NAME>'
SPIDERMON_SENTRY_ENVIRONMENT_TYPE = '<ENVIRONMENT_TYPE>'

A notification on Sentry will look like the following one:

The message will have tags based on the failed monitor names (after replacing whitespace, special symbols etc.), but
as the tag length is limited to 32 chars you should use @monitors.name to set monitor names that will produce
useful tag names.

The following settings are needed to make this action workable:

SPIDERMON_SENTRY_DSN

Data Source Name provided by Sentry, it’s a representation of the configuration required by the Sentry SDKs.

SPIDERMON_SENTRY_PROJECT_NAME

Project name to use in notification title.

SPIDERMON_SENTRY_ENVIRONMENT_TYPE

Default: Development

Environment type to use in notification title. It could be set to anything like local, staging, development or production.

44 Chapter 1. Contents

https://sentry.io/
https://docs.sentry.io/product/sentry-basics/dsn-explainer/#dsn-utilization
https://sentry.io/
https://sentry.io/

Spidermon Documentation

SPIDERMON_SENTRY_LOG_LEVEL

Default: error

SPIDERMON_SENTRY_FAKE

Default: False

If set True, the Sentry message will be in the logs but nothing will be sent.

1.8.9 Custom Actions

You can define your own custom actions to be executed by your monitor suites. Just create a class that inherits from
spidermon.core.actions.Action and implement the run_action method.

from spidermon.core.actions import Action

class MyCustomAction(Action):
def run_action(self):

Include here the logic of your action
(...)

1.8.10 Fallback Actions

When creating your own custom actions, you can also add a fallback action to run if an action throws an unhandled
exception. To do this, add a fallback attribute to your custom action.

from spidermon.core.actions import Action

class MyFallbackAction(Action):
def run_action(self):

Include here the logic of your action
Runs if MyCustomAction().run_action() throws an unhandled exception
(...)

class MyCustomAction(Action):
fallback = MyFallbackAction
def run_action(self):

Include here the logic of your action
(...)

You can also add fallbacks to spidermon built-in actions by subclassing them. For example, send an email if a slack
message could not be sent.

from spidermon.core.actions import Action
from spidermon.contrib.actions import Slack
from spidermon.contrib.actions.email.smtp import SendSmtpEmail

class MyCustomSlackAction(Slack):
fallback = SendSmtpEmail

1.8. Actions 45

Spidermon Documentation

1.9 Release notes

1.9.1 1.18.0 (2023-03-13)

• feature: Support setting the Return-Path for Amazon SES emails (PR#381)

• bug: Fix BaseStatMonitor failing in Scrapy Cloud when settings were provided as strings (PR#378)

• feature: Add setting SPIDERMON_FIELD_COVERAGE_SKIP_IF_NO_ITEM to allow skipping
FieldCoverageMonitor if no items were scraped (PR#372)

• feature: Add Fallback Actions. Action now allows to define fallback field that may contain an
additional Action to be executed if an exception is raised during the main action (PR#365)

• feature: Use ItemAdapter when working with items to support the same types of item as Scrapy (PR#358)

• chore: Refactor code from spider.contrib.scrapy into base, monitors and suites subpackages
(PR#386)

• chore: Replace tox pep8 functionality with pre-commit git hooks (PR#387)

• chore: Update contributing guidelines to include reference to pre-commit tool (PR#392)

1.9.2 1.17.1 (2023-01-05)

• bug: Fix Slack dependency name issue (PR#367)

• chore: Change the Ubuntu version on workflow settings (PR#373)

• docs: Adding PeriodicExecutionTimeMonitor to the batteries docs (PR#368)

• feature: Adding the use of ItemAdapter to prevent assumptions of item nature (PR#358)

• misc: Fix compatibility issues with jsonschema>=4 (PR#364)

1.9.3 1.17.0 (2022-09-12)

• feature: Updated DownloaderExceptionMonitor and ItemValidationMonitor to inherit from BaseStatMonitor
(PR#334, PR#335)

• feature: Updated Slack action to use slack-sdk as library in replacement of deprecated slackclient (PR#313)

• feature: Added new action to allow to send notification to Discord channels (PR#348)

• feature: Added Python 3.10 support (PR#349)

• feature: Added new action to allow to send email notifications using SMTP server (PR#345)

• misc: small bug fixes and documentation improvements that can be checked in the milestone summary.

1.9.4 1.16.2 (2021-12-23)

• feature: Create base class to aid the creation of custom monitors that only validates against a job stat value
(PR#325)

• feature: Add built-in monitor for critical errors (PR#329)

• feature: Use new base class to implement some built-in monitors (PR#326 PR#327 PR#328)

• feature: Add new built-in monitors for common validations (PR#284)

46 Chapter 1. Contents

https://github.com/scrapinghub/spidermon/pull/381
https://github.com/scrapinghub/spidermon/pull/378
https://github.com/scrapinghub/spidermon/pull/372
https://github.com/scrapinghub/spidermon/pull/365
https://github.com/scrapinghub/spidermon/pull/358
https://github.com/scrapinghub/spidermon/pull/386
https://github.com/scrapinghub/spidermon/pull/387
https://github.com/scrapinghub/spidermon/pull/392
https://github.com/scrapinghub/spidermon/pull/367
https://github.com/scrapinghub/spidermon/pull/373
https://github.com/scrapinghub/spidermon/pull/368
https://github.com/scrapinghub/spidermon/pull/358
https://github.com/scrapinghub/spidermon/pull/364
https://github.com/scrapinghub/spidermon/pull/334
https://github.com/scrapinghub/spidermon/pull/335
https://pypi.org/project/slack-sdk/
https://pypi.org/project/slackclient/
https://github.com/scrapinghub/spidermon/issues/313
https://github.com/scrapinghub/spidermon/pull/348
https://github.com/scrapinghub/spidermon/pull/349
https://github.com/scrapinghub/spidermon/pull/345
https://github.com/scrapinghub/spidermon/milestone/13?closed=1
https://github.com/scrapinghub/spidermon/pull/325
https://github.com/scrapinghub/spidermon/pull/329
https://github.com/scrapinghub/spidermon/pull/326
https://github.com/scrapinghub/spidermon/pull/327
https://github.com/scrapinghub/spidermon/pull/328
https://github.com/scrapinghub/spidermon/pull/284

Spidermon Documentation

• bug: Allow Slack bot to send notification correctly even if an icon URL is not defined to the bot (PR#307)

• bug: Fix regex to match validation error message from schematics library (PR#310)

• chore: Remove six library and upgrade Python syntax (PR#270)

• chore: Remove travis and configure Github Actions (PR#291)

1.9.5 1.15.2 (2021-10-04)

• chore: Add Github Actions support and remove Travis

1.9.6 1.15.1 (2021-10-04)

• chore: Pin jsonschema version to 3.2.0 to avoid problems with newest version that has backward incompatible
changes

• chore: Pin schematics version to 2.1.0 to avoid problems with newest version that has backward incompatible
changes

1.9.7 1.15.0 (2021-04-06)

• feature: Improve content of Sentry messages (PR#279)

• bug: Replace boto with boto3 for Amazon SES work correctly (issue#285)

1.9.8 1.14.0 (2020-10-05)

• feature: Built-in monitor for field and item coverage (issue#253)

• feature: Add field coverage statistics (PR#262)

• chore: Update required slackclient version (PR#265)

• chore: Add Python 3.8 support (issue#255)

• chore: Drop Python 3.5 support (issue#266)

• chore: Remove test decorator that skips tests if executed in old Python versions (PR#258)

• chore: Fix deprecation warnings (PR#272, PR#274)

• docs: Fix inconsistent examples (PR#273)

1.9.9 1.13.0 (2020-06-23)

• bug: Fix Telegram action error logging

• feature: Disable item validation pipeline when Spidermon is disabled

• feature: Item validation built in monitor

• chore: Removed Python 2.7 support

• docs: Improved documentation organization

1.9. Release notes 47

https://github.com/scrapinghub/spidermon/pull/307
https://github.com/scrapinghub/spidermon/pull/310
https://github.com/scrapinghub/spidermon/pull/270
https://github.com/scrapinghub/spidermon/pull/291
https://github.com/scrapinghub/spidermon/pull/279
https://github.com/scrapinghub/spidermon/issues/285
https://github.com/scrapinghub/spidermon/issues/253
https://github.com/scrapinghub/spidermon/pull/262
https://github.com/scrapinghub/spidermon/pull/265
https://github.com/scrapinghub/spidermon/issues/255
https://github.com/scrapinghub/spidermon/issues/266
https://github.com/scrapinghub/spidermon/pull/258
https://github.com/scrapinghub/spidermon/pull/272
https://github.com/scrapinghub/spidermon/pull/274
https://github.com/scrapinghub/spidermon/pull/273

Spidermon Documentation

1.9.10 1.12.2 (2020-05-07)

• Fixed version 1.12.1 changelog

1.9.11 1.12.1 (2020-05-07)

• bugfix: AttributeError when using ValidationMonitorMixin (issue)

• docs: How-To Guide - Adding required fields coverage validation (pull request)

1.9.12 1.12.0 (2020-01-09)

• Dropped python 3.4 support

• Added action to send monitor reports to Telegram

• Added fallback to scrapy AWS settings

• Logged errors from Slack API calls

• Allowed to define SPIDERMON_SLACK_RECIPIENTS setting as a comma-separated string with the desired
recipients

• Read SES settings with getlist

• Added documentation of Expression Monitors

• Improved Slack action documentation

• Fixed sphinx warnings when building docs

• Fixed warnings in docs build

• Validate docs build in CI

• Applied and enforced black formatting on spidermon source code

• Configured test coverage reporting in project

1.9.13 1.11.0 (2019-08-02)

• Allowed per-field checking in ValidationMonitorMixin

• Added option to set AWS Region Name on SES E-Mail action

• Added default value for ‘SPIDERMON_BODY_HTML_TEMPLATE’ setting

• Fixed bug in logging of Slack messages when fake setting is enabled

• Enforced lxml 4.3.5 or lower for Python 3.4

• Improved stats history documentation

1.9.14 1.10.2 (2019-07-01)

• Version 1.10.1 with CHANGELOG updated

48 Chapter 1. Contents

https://github.com/scrapinghub/spidermon/issues/246
https://github.com/scrapinghub/spidermon/pull/247

Spidermon Documentation

1.9.15 1.10.1 (2019-07-01)

• Allowed to add absolute location for custom templates

1.9.16 1.10.0 (2019-06-12)

• Added new StatsCollector that access stats data from previous spider executions.

• Added new setting to define the max number of unwanted HTTP status codes allowed in built-in monitor.

• Improved validation error messages with JSON Schema when additional fields are found.

• Made possible to retrieve JSON schema files from external locations.

• Included documentation of periodic monitor suites.

• Fixed bug caused by new slackclient release.

• Other small documentation improvements.

1.9.17 1.9.0 (2019-03-11)

• Add set of built-in basic monitors with the most common test methods to allow start monitoring spiders more
straightforward.

• Add SendSentryMessage action to send notifications to Sentry containing the results of Spidermon execution.

• Add SPIDERMON_ENGINE_STOP_MONITORS setting to list monitors to be executed when the Scrapy en-
gine is stopped.

• Fix bug that prevented the use of custom model-level validators in schematics models.

• Refactor JSONSchemaValidator to allow select different versions of JSON Schema.

• Refactor requirements in setup.py to include missing required dependencies.

• Fix bug caused by backward incompatible change in jsonschema 3.0.0.

• Fix example code of tutorial.

• Install documentation improvements.

1.9.18 1.8.0 (2019-01-08)

• Remove CreateJobReport action.

• Include new documentation and tutorial code.

• Rename internal method in MonitorRunner to fix typo.

1.9.19 1.7.0 (2018-12-04)

• Support universal wheels.

• Skip authentication and recipient settings when running in fake mode.

1.9. Release notes 49

Spidermon Documentation

1.9.20 1.6.0 (2018-11-09)

• Add SPIDERMON_EMAIL_CONTEXT setting to pass custom contexts to email actions.

• Add support for Schematics 2.1.0.

1.9.21 1.5.0 (2018-09-19)

• Convert the job ID tag into a clickable button.

1.9.22 1.4.0 (2018-08-17)

• Avoid requests to get the amount of lines in the log by default, because they consume too much memory and
they are very slow. You can still use the old behavior adding show_log_count to the context before creating
the email message.

• Refactor the requirements in setup.py.

• Update the Sphinx configuration.

1.9.23 1.3.0 (2018-08-02)

• Add support for periodic monitors in the Scrapy extension.

1.9.24 1.2.0 (2018-04-04)

• Modify ItemValidationPipeline in order to support dict objects in addition to Scrapy.Item objects.

• Refactor ItemValidationPipeline to make it easier to extend this class.

1.9.25 1.1.0 (2018-03-23)

• Add Schematics 2.* support. Note that Schematics 2.0.0 introduced many changes to its API and even some
validation rules have a slightly different behaviour in some cases.

• ItemValidationPipeline optimisations for cases where no validators can be applied.

1.9.26 1.0.0 (2018-03-08)

• Add Python 3 support.

• Run tests on Python 2 and Python 3.

• Add dependencies for optional validation features to setup.py.

• Import HubstorageClient from the scrapinghub library if available.

• Replace dash.scrapinghub.com with app.scrapinghub.com.

50 Chapter 1. Contents

Spidermon Documentation

Backwards Incompatible Changes

• Rename attachements attribute in the SendSlackMessage class to attachments.

• Add the SPIDERMON_ENABLED setting to control if the Scrapy extension should run (note that it is disabled
by default).

1.9. Release notes 51

Spidermon Documentation

52 Chapter 1. Contents

Python Module Index

s
spidermon.contrib.scrapy.monitors.monitors,

14

53

Spidermon Documentation

54 Python Module Index

Index

C
CriticalCountMonitor (class in spider-

mon.contrib.scrapy.monitors.monitors), 14

D
DownloaderExceptionMonitor (class in spider-

mon.contrib.scrapy.monitors.monitors), 14

E
ErrorCountMonitor (class in spider-

mon.contrib.scrapy.monitors.monitors), 14

F
FieldCoverageMonitor (class in spider-

mon.contrib.scrapy.monitors.monitors), 14
FinishReasonMonitor (class in spider-

mon.contrib.scrapy.monitors.monitors), 15

I
ItemCountMonitor (class in spider-

mon.contrib.scrapy.monitors.monitors), 15
ItemValidationMonitor (class in spider-

mon.contrib.scrapy.monitors.monitors), 15

M
Monitor (class in spidermon.core.monitors), 11
MonitorSuite (built-in class), 12

O
on_monitors_failed() (MonitorSuite method), 12
on_monitors_finished() (MonitorSuite method),

12
on_monitors_passed() (MonitorSuite method), 12

P
PeriodicExecutionTimeMonitor (class in spi-

dermon.contrib.scrapy.monitors.monitors), 16

R
RetryCountMonitor (class in spider-

mon.contrib.scrapy.monitors.monitors), 16

S
spidermon.contrib.scrapy.monitors.monitors

(module), 14
SuccessfulRequestsMonitor (class in spider-

mon.contrib.scrapy.monitors.monitors), 16

T
TotalRequestsMonitor (class in spider-

mon.contrib.scrapy.monitors.monitors), 16

U
UnwantedHTTPCodesMonitor (class in spider-

mon.contrib.scrapy.monitors.monitors), 16

W
WarningCountMonitor (class in spider-

mon.contrib.scrapy.monitors.monitors), 17

Z
ZyteJobsComparisonMonitor (class in spider-

mon.contrib.scrapy.monitors.monitors), 17

55

	Contents
	Installation
	Getting started
	Monitoring your jobs
	Item Validation
	Expression Monitors
	Settings
	“How-to” guides
	Actions
	Release notes

	Python Module Index
	Index

